secuvera

Cybersicherheit. Nachhaltig.

5G Security

MOB1 Guest Lecture at Goethe University Frankfurt 29.01.2024

Sebastian Fritsch secuvera GmbH, Gäufelden/Stuttgart

- Agenda
 - → Introduction & Motivation
 - 5G Overview
 - 5G Security: Regulation and Certification
 - Security Testing in 5G
 - Future Challenges

secuvera

- whoami
 - Sebastian Fritsch
 - Dipl.-Inform.
 - TU Darmstadt
 - Product Security Evaluator
 - Head of Evaluation Facility (CC Laboratory, ITSEF)
 - Working in ISO and IEC
 - ISO SC 27/WG 3 develops Common Criteria (ISO 15408/18045)
 - IEC TC 65/WG 10 develops IEC 62443

secuvera GmbH

- We are...
 - 35 top security experts
- What we do…
 - IT Security, Cybersecurity, 100%
- We are located in?
 - near Stuttgart, Gäufelden
 - Remote

- BSI Security Testing Lab (aka ITSEF)
 - > 5G Security Testing Lab
- Penetration testing / web application security
- ISO/IEC 27001 / Security Management
- Training, Consulting,
 Research Projects, ...

Agenda

- Introduction & Motivation
- → 5G Overview
- 5G Security: Regulation and Certification
- Security Testing in 5G
- Future Challenges

Who is already using 5G?

Source: www.teltarif.de

5G Availability

Germany, October 2022

Source:

https://www.computerbild.de/artikel/ cb-Tests-Handy-Mobilfunk-Netztest-2022-2023-34919053.html

- Two types of 5G networks
 - Public networks
 - Germany: Telekom, Vodafone, Telefonica, 1&1
 - Private networks
 - "5G-Campusnetze"
 - Germany: needs licence from BNetzA (Federal Network Agency)

- 4G to 5G migration
 - Non-standalone networks: allow migration path

- 5G technology's impact on B2B landscape
 - 1. B2B Applications of 5G
 - 2. B2B Service Model
 - 3. Network Configuration for B2B
 - 4. B2B Collaborations in 5G Development

secuvera

New use-cases

 5G brings <u>new use-cases and new applications</u> for mobile networks → Verticals

- E-Health
- Smart Energy Grid
- Smart Factories
- Media & Entertainment
- Mobility
- New 5G service categories/profiles
 - Enhanced Mobile Broadband (eMBB)
 - Massive Machine-type Communications (mMTC)
 - Ultra-reliable and Low Latency Communications (URLLC)

https://www.researchgate.net/figure/5G of-associated-applications-

- Alternative for connectivity
 - 5G allows <u>public deployments</u> (mobile operators) or <u>private deployment</u> (private 5G networks)
 - WiFi and 5G will become more competitive standards

Source: https://www.mecsware.com/

form factor comparable to WiFi access points

5G Use-Case example

Source: Siemens, https://new.siemens.com/de/de/produkte/automatisierung/industrielle-kommunikation/industrial-5g.html

5G Use-Case example

Source: 5G-ACIA White Paper, 5G for Industrial Internet of Things (IIoT): Capabilities, Features, and Potential

Classical fieldbuses for automation systems (wired connections)

ORGANIZATION	RESPONSE TIME (for 100 axles)	JITTER	DATA RATE
Ethernet/IP CIPSync ODVA	1ms	<1ms	100Mbit/s
Ethernet Powerlink EPSG	<1ms	<1ms	100Mbit/s
PROFINET-IRT PNO	<1ms	<1ms	100Mbit/s
SERCOS-III IGS	<0.5ms	<0.1ms	100Mbit/s
EtherCAT ETG	0.1ms	<0.1ms	100Mbit/s

Real-time comparison of the various real-time method. (Source: IEBmedia)

secuvera

5G Protocols → 3GPP → 5G

Source: https://github.com/nickel0/3GPP-Overall-Architecture

5G Internals: Protocol Stack

5G Internals

- AMF: Access and Mobility Management Function
 - Mobility & Registration & Connection Management
 - User Authentication & Core Network Security Anchor
- SMF: Session Management Function
 - Session (User Plane Data) management
 - Session Establishment / Modification/ Release
 - Controlling QoS Parameter (Quality of Service)
 - Configuration of the UPF (User Plane Function)
- ...much more other Network Functions

5G Internals: Protocol Stack

5G Core Architecture - Two Perspectives

Reference Point Architecture

- Elements Network Functions
- Interaction between NFs represented by point-to-point reference point
- Software based simplified Network Functions

Service Based Architecture (SBA)

- Service based interfaces
- Web based RESTful APIs
- Set of definitions acting as interface between different software applications enabling communication

Source: David Rupprecht, Radix Security, 5G Security: Architecture & Security Features

Do you remember?

5G evolution works like this:

- 5G Non-Standalone (NSA)
 - uses existing 4G RAN and 4G Core Network
- 5G Standalone (SA)
 - greenfield network

security impact: legacy support and more interfaces

5G Releases

Application Enablement Standards

Source: https://www.3gpp.org/news-events/3gpp-news/sa6-app-enable

5G Release Roadmap

Release timelines:

High frequency of new releases

→ challenge for security evaluation

Source: https://www.3gpp.org/specifications-technologies/releases

Agenda

- Introduction & Motivation
- 5G Overview
- → 5G Security: Regulation and Certification
- Security Testing in 5G
- Future Challenges

5G Regulation in Europe

Source: EU Commission

- German 5G Certification Strategy
 - Article 165(4) of the Telecommunications Act (TKG)
 - operators of public telecommunications networks with increased risk potential may use critical components [..] only if they have been checked and certified by an approved certification body prior to their first use.
 - SiKa (Sicherheitskatalog)
 - Catalogue of security requirements for the operation of telecommunications and data processing systems and for the processing of personal data pursuant to § 109 of the Telecommunications Act (TKG), Version 2.0
 - BSI TR-03161: Security in Telecommunications Infrastructure

German 5G Certification Strategy (TR-03163)

Source: BSI, TR-03163: Security in Telecommunications Infrastructure, Annex A, Version 1.2

GSMA's security initiatives/schemes

- GSMA Security Accreditation Scheme (SAS) for assessment of the security of UICC and eUICC suppliers, and their subscription management service providers
- GSMA Network Equipment Security Assurance Scheme (NESAS)
 https://www.gsma.com/security/network-equipment-security-assurance-scheme/
 - allows mobile operators to audit and test network equipment vendors, and their products, against a security baseline
 - in general: specification-based approach

Two assurance pillars in NESAS

Step 2: Product evaluation

Source: GSMA, Document FS.13 - NESAS Overview v.2.2

- Step 1: Audit Security Development Lifecycle (SDL) NESAS Development process requirements
 - [REQ-DES-01] Security by Design
 - [REQ-IMP-01] Source Code Review
 - [REQ-BUI-01] Automated Build Process
 - [REQ-TES-01] Security Testing
 - [REQ-REL-01] Software Integrity Protection
 - [REQ-OPE-01] Security Point of Contact
 - [REQ-GEN-01] Version Control System

NESAS, FS.16 – NESAS Development and Lifecycle Security Requirements v.2.0

- Step 2: Product evaluation (Network component)
 - Need for testing requirements
 - SCAS documents from 3GPP

```
TS 33.117 Catalogue of general security assurance requirements
```

TS 33.116 Security Assurance Specification (SCAS) for the MME network product class

TS 33.216 Security Assurance Specification (SCAS) for the evolved Node B (eNB) network product class

TS 33.250 Security assurance specification for the PGW network product class

TS 33.511 Security Assurance Specification (SCAS) for the next generation Node B (gNodeB) network product

TS 33.512 5G Security Assurance Specification (SCAS); Access and Mobility management Function (AMF)

...

- Set of SCAS documents refers to 3GPP-Release
 - Available for 3GPP release 16, 17 and 18

SCAS Test cases

- SCAS document example
 - Example from TS 33.117
 Catalogue of general security assurance requirements
 - Security functional requirements and related test cases
 - Basic vulnerability testing requirements
- Tests are specified in 3GPP working groups

4.2.3.5.2 Protecting sessions – Inactivity timeout

Requirement Name: Protecting sessions - inactivity timeout

Requirement Description: An OAM user interactive session shall be terminated automatically after a specified period of inactivity. It shall be possible to configure an inactivity time-out period.

NOTE: The kind of activity required to reset the timeout timer depends on the type of user session.

Test Name: TC_PROTECTING_SESSION_ INAC TIMEOUT

Purnose

To ensure an OAM user interactive session shall be terminated at inactivity timeout.

Procedure and execution steps:

Pre-Conditions:

- The tester has privileges to create an OAM user interactive session.
- The tester has privileges to configure the inactivity time-out period for user interactive session.
- Session log should be enabled.

Execution Steps

- 1. The tester creates OAM user A interaction session.
- 2. The tester configures the inactivity time-out period for user A to x minute, for example 1 minute.
- The tester does not make any actions on the network production in x minutes. After that, the tester checks whether OAM user A interaction session has been terminated automatically.

Expected Results:

- In step 3, OAM user A interaction session has been terminated automatically after x minute.

Expected format of evidence:

A testing report provided by the testing agency which will consist of the following information:

- Session log
- Settings, protocols and configurations used

Test result (Passed or not)

German 5G Certification Strategy (TR-03163)

Source: BSI, TR-03163: Security in Telecommunications Infrastructure, Annex A, Version 1.2

Agenda

- Introduction & Motivation
- 5G Overview
- 5G Security: Regulation and Certification
- → Security Testing in 5G
- Future Challenges

- Security ...in general
 - Security is about CIA
 - Confidentiality, Integrity, Availability
 - and Privacy
 - and Safety, Quality... (sometimes called essential functions)
 - What is the security scope?
 - Security functionality
 - Security of products
 - Security of systems

Security Certification

- Security Evaluation
 - Evaluate/Analyse Products (includes Design) and Processes
- Security Testing
 - Test product directly
 - Vulnerability analysis
- Complexity of Security Testing
 - specification, implementation, configuration, interfaces, (continuous) state of the art, ...
 - we never know the complete behaviour, new knowledge arises

- Security Evaluation: two approaches (two cultures)
 - 1. Specification-based approach
 - (exactly) define required security functionality
 - develop and maintain test cases
 - pro/con:
 - + predictable evaluation execution time
 - does not find problems outside the scope

- Security Evaluation: two approaches (two cultures)
 - 2. Attack-based approach
 - allows evaluation team to be investigative and attack focused
 - need for test engineering (in case of new products, new technologies) as part of the evaluation project
 - pro/con:
 - + allows state-of-the-art evaluation results (high quality)
 - uncertainties for vendors regarding test cases and competition

secuvera

Security Evaluation Basics

WHAT? • Product • Documentation • Processes

HOW?

- Analyse documents
- Audit processes
- Product testing (directly thru interfaces)
- Vulnerability analysis

Requirements fulfilled?

Resistance

Resistance to prevent attacks?

Security Evaluation Example

Example 1:
 Test authentication functionality → testing → develop test cases (derived from security functional requirements) → allows pass/fail tests

Example 2:
 Search for vulnerabilities in used 3rd party software libraries (reading SBOM, or use root shell, or ...) → vulnerability analysis → might lead to exploitable vulnerability in product interface

Basic Requirements for Testers

- Basic technical skills
 - Computer science, Communications engineering, ..., MINT
- Knowledge of the technology for example
 - Network products → TCP/IP, WAN technologies, WiFi, ...
- Loves to learn new things (in a short timeframe)
 - deep-dive into specific technologies
- Team player
 - sharing knowledge and experience is key to run commercial evaluation projects

- <u>5G-specific Requirements</u> for Testers
 - Knowledge of <u>3GPP terminology and concepts</u>
 - major barrier to entry!
 - Basic protocols like HTTP, REST, TLS, OAUTH, ...
 - Communication flows within 5G (physical/radio layer, different logical layers)
 - <u>Deployment strategies</u>: OpenRAN, Network Core Virtualization, Private 5G Scenarios/Devices

— ...

- 5G Security Evaluation
 - performed by ITSEF (IT Security Evaluation Facility)
 - or lab, works according to ISO/IEC 17025 (laboratory standard)
 - evaluation team
 - evaluation test setup

- Challenges in 5G Security Testing
 - 3GPP standards focus on functionality and interoperability
 - but no (additional) test interfaces yet
 - consideration of deployment aspects
 - use of vendor facilities, tools or resources
 - rapid turnaround times → major challenge for actual security certification models
 - fast 3GPP release cycle

- Do you remember? TR-03163 certification
 - NESAS
 - Allows for automated testing
 - Specification-based
 - Common Criteria (CC)
 - Classical security certification model
 - Compliance to protection profiles
 - Attack-based (in Europe)
 - BSZ
 - Fixed-time product penetration test
 - Attack-based

Agenda

- Introduction & Motivation
- 5G Use-Cases & Internals
- Threats & Risks in 5G Networks
- Security Evaluation of 5G Components
- → Future Challenges

- Complexity of 5G and legacy aspects
 - 5G must be configured and operated
 - Private 5G network
 - Do operators have security experts?
 - New opportunity to operate components from different vendors
 - more open connections
 - Backward compatibility
 - especially in non-standalone networks
 - behaviour of network components could be different

Certification of 5G networks

- Goal: operators (public or private) have the obligation to run secure networks
- Configuration is typically a challenge in lab test setups
 - How to setup the full complexity?
 - Misconfiguration is often the root cause of undetected, exploitable vulnerabilities
- Network scenarios are getting more diverse/complex, e.g. multi vendor strategy
- Open question:
 Can we attest the security status of the whole 5G network?

- Agile evaluation/certification process
 - Industry complains: security evaluation limits innovation in products
 - Evaluation requires support/resources from vendors
 - Open question:
 Can we certify more agile?
 Certification as part of the development pipeline?

- Agile evaluation/certification process
 - Shift left optimization

Source: OPNESAS Project

- Global security regulation
 - 5G Regulation in Germany
 - Cyber Resilience Act (CRA) in Europe
 - Regulation in North America, Asia, ...
 - Open question for manufactures:
 How to avoid repetition of tests for different schemes and markets?
 - And how to show compliance efficiently?

Source: OPNESAS Project

- Are you interested in an 5G security internship?
 - secuvera is leading a 5G certification research project!
 - OPNESAS
 - project partners: secuvera, Radix Security & Ruhr Uni Bochum
 - 24 month, between 01/2023 and 12/2024
 - direct contact: <u>sfritsch@secuvera.de</u>
 - visit: https://www.secuvera.de/unternehmen/karriere/

secuvera

secuvera5G laboratory

Licence (BNetzA)

Technology (Core and Radio)

What are our motivations?

- ...security hygiene for complex products
- ...identify weaknesses and errors before product is globally available
- ...have more secure products for own usage
- ...support the evolution of testing/evaluation criteria for future projects (not only for our team, standardization)

- We are looking for?
 - (Junior) Product Testers
 - (Junior) Consultants for Security Certification
 - (Junior) Industrial Security Consultants

- Details...
 - https://www.secuvera.de/unternehmen/karriere/

 Last but not least, since 5 years we are a...

- Why? Please have a look…
 - https://www.secuvera.de/unternehmen/karriere/secuvera-als-arbeitgeber/

61

secuvera

Cybersicherheit. Nachhaltig.

Sebastian Fritsch sfritsch@secuvera.de +49-7032/9758-24

secuvera GmbH Siedlerstraße 22-24 71126 Gäufelden/Stuttgart Germany