mobile N\

busin_e_ss:

Chair of Mobile Business &
Multilateral Security

Lecture 09

Business Informatics 2 (PWIN)
WS 2023/24

|ICS Development Il
Object Orientation & UML

Prof. Dr. Kai Rannenberg

Chair of Mobile Business & Multilateral Security
Johann Wolfgang Goethe University Frankfurt a. M.

mobile N\
busm_e_ss_

Agenda

= Object-Oriented Approach

= Unified Model

= Model-Driven

ing Language (UML)

Development and Architectures

business Object Orientation (OO0)

OO0 sees things that are part of the real world.

o By ' N \f @

O0-Models represent only the relevant aspects of real world things.

%d

Objects store their data by themselves and encapsulate them for
protection from other objects.

* Name

* Phone No.

* E-Mail

» Teaching Subjects

. Object-Oriented Software
mobile N\
business Development

= Consideration of software as collection of
interacting objects that work together in order
to accomplish tasks.

= Objects - things in a computer system that can
respond to messages.

= Conceptually, no processes, programs, data entities,
or files are defined - just objects.

mé)bi!e% Basic OO Elements
usm_e_ss_

= (Class

= Aclass is a template for an object. It contains variables,
constants and methods.

= Object

= QObjects are instances of classes, which exist during runtime.
Multiple objects can be instantiated from a single class.

= Association
= Relation between classes or objects

= |nstantiation

= Creation of objects according to the template of a class during
runtime

mﬁ?si!ﬁe\\ss Basic OO Elements

Class Association

Book Library
1.% 0.*
| : N
i | | Relation
| — Class - Object
b ! | Multiplicity |)
| | '.
] |]
Novel Non-fiction book City library

T/

Object

m&'j’si!ﬁe\\ss Basic OO Concepts

= Encapsulation
= Data is stored in an object and can only be accessed via the offered

methods.
Class name MyCounter Increasing/decreasing
Attribute - count the “count” property only
= works by sending a message to
+ increase() the “increase” or “decreasing”
Methods :
+ decrease() operation.

= |nheritance

= (Classes can inherit attributes or methods from other classes. The
bequeathing class is called “super class” or “parent class”. The inheriting

class is called a “subclass”. Car

JTL

Convertible Roadster Coupé

m&'j’si!ﬁe} Basic OO Concepts

= Messages
= A message is sent to an object in order to instruct it to call a

method.
MyCounter
- count

MyCounter.increase(n) > + increase()
+ decrease()

Polymorphism
= |f a message is sent to objects of different classes, these objects
return different results, as the called method can be implemented
differently for each object.
= For instance, the message “Print” sent to the objects “Address List”
and “Order”

Address List Object.print() Order

+ print() + print()

mt?t?slgﬁ_e?\ss_ OO Terminology and Concepts

= Object-oriented Analysis (OOA)
*= Object-oriented Design (OOD)

= Object-oriented Programming (OOP)

mobile Object-Oriented Analysis (OOA)

busm_e_ss:

= OOA describes a system as a group of interacting
objects, generating a conceptual model within a
problem domain.

= This results in a description of how the software is
required to behave.

= The conceptual model does not describe any
implementation details. Those are developed in the
design phase.

mobile 3\ Object-Oriented Design (OOD)

busm_e_ss:

= Takes the conceptual model generated by object
oriented analysis as input.

= Refines each object type to be implemented with a
specific language according to its environmental
context

= Takes into account the chosen architecture,
technological and environmental constraints

= Typical Output: Class-Diagram

mobile X\ Object-Oriented
business Programming (OOP)

= OOP is a programming paradigm for software

= |t centres around the concept of “Objects”, which
consist of data structures and methods

= |t takes the results of the OOD as input

= 00 languages: Java, C++, C#.NET, VB.NET

mobile N OO Development Process
business

= Object-oriented Analysis (OOA)

4

= Object-oriented Design (OOD)

$

= Object-oriented Programming (OOP)

¥

= 00 Software

mobile N\
busm_e_ss_

Agenda

= Object-Oriented Approach

= Unified Model

= Model-Driven

ing Language (UML)

Development and Architectures

mobile N\

business Unified Modelling Language (UML)

Modelling language developed by Booch, Jacobson und
Rumbaugh in 1996

Standard of the OMG (Object Management Group)
Current Version: 2.5.1 (December 2017)

-
-
v

N\

_-l““‘\\‘

W
A

i ¥

a
: \\\\
\

\‘“‘Il
- -II““\\\

o

BJECT MANAGEMEN ROUP

Standardisation ...
= of different object-oriented notations and

= of methods through all phases of the software
development

by using different types of models (data-oriented,
object-oriented, process-oriented, etc.).

M=) UML Concept

= Supports analysis and design of object-oriented software
systems

= UML includes multiple Views on a system

= Each View specifies and documents a system from a
different perspective.

= Each View is supported by one or more diagrams.

= UML is not a process model - UML does not define a
process for creating UML models.

mlgl?si%ﬁe\\ss UML Structure

= Basic elements

= Object-oriented notation elements

= Additional elements to describe the modelled system (e.g.
activities, actor, etc.)

= Diagrams
= Composition of notation elements
= Represents a certain View on a system

= Complete model
= The complete model is based on the basic elements.

= Different Views on the complete model by different diagram
types

mobile N\
busm_e_ss_

UML Structure

Basic elements

Diagrams

Complete model

18

mobile N\
busm_e_ss:

= Use case view
= Logical view
* |[mplementation view

UML Views

= Process view
= Deployment view

Logical
View

Implementation
View

" Use Case ™\

N View

Process
View

Deployment
View

Source: Hitz et al

., 2015

mtc))t?slgﬁe\\ss Use Case View

Describes high level functionalities of a system

Used by stakeholders, designers, developers
and testers

Represented by use case diagrams
Serves as the basis for other views

Mobile Su Logical View

= Describes functionalities to be designed and
implemented

= Describes static and dynamic aspects of a
system

= Mostly used by designers and developers

= Represented by class diagrams, object diagrams
(static view), state diagrams, interaction and
activity diagrams (dynamic view)

mt?fsilﬁe\\ss Implementation View

= Describes the organisation of software
components

= |t divides the logical entities into actual
software components

= Represented by component diagrams
= Mostly used by developers

mtc))t?slgﬁe\\ss Process View

= Describes processes in a system
= Mostly used by developers and testers

= Represented by state, interaction and activity
diagrams

= Supports concurrency and handling of
asynchronous events

mt?[?si!ﬁe\\ss Deployment View

= Describes physical architecture and
assignment of components to architectural
elements

= Mostly used by designers, developers and
managers

= Represented by package, component and
deployment diagrams

mobile N\ UML Diagrams
busingss Examples

<=__Use case diagram > } Use case diagram

> Static elements

<=__Class diagram _> Structural diagrams
= Object diagram

<& Activity diagram__>
= Sequence diagram

= Collaboration diagram
= State diagram

> Behavioural diagrams } Dynamic elements

~/

= Component diagram
= Deployment diagram

} Architectural diagrams } Architectural elements

25

mt?fsi!ﬁe\\ss Use Case Diagram

= Use cases describe the functionality, which a system has to
provide

= The sum of all “Use cases” comprises the technical
requirements of a system.

= Use cases define the interfaces between a user and the
system

= Specification is developed together with the
client/customer

mobile N\ Use Case Diagram
business Notation Elements

= Use Case
= Representation of a sequence of actions that provides

value to an actor.

= User of the system i

Actor

= Association
= |nteraction of an actor with a use case

=

Actor

mobile N\ Use Case Diagram
business Notation Elements

= Generalisation

= Generalisation of Use Cases
= UseCase2 generalises the behaviour of UseCase1

mobile N\ Use Case Diagram
business Notation Elements

= Extends
= Extends a Use Case
= UseCase2 extends UseCase1

= |ncludes
= Inclusion of a Use Case
= UseCase1 includes the behaviour of UseCase2

mobile N\ Use Case Diagram
pusingss (Example)

heck-In Agent
Checlcin Agen Passenger

Automated
Check- In

Express Check-In
/

Delivery of
Boarding
Ticket

Boarding

Baggage Check-In Customs Authority

30

mt?fsi!ﬁe\\ss Structural Diagrams

= Class diagrams

= Representation of the static structure of a software
system

= Description of logical relations between structural
elements

= No activity or control logic

= Object diagrams
= |nstances of a class diagram
= ,,Snapshot® of a system during runtime

mobile X\ UML Class
busin_e_ss_

Classes are represented by rectangles, which Class
include the name of the class, its attributes
and methods.

- Attribute

+ method1()
+ method2()

The class nhame is in singular and starts with
an upper case letter.

Attributes and methods are separated by

horizontal lines. Person
- Name
,+/-“: Attribute/Method is public/private + displayName()
+ changeName()

mgl?sigﬁe\\ss UML Class

= (Class attributes
= (Class attributes belong to the class, not to the object.

= (Class attributes have the same value for all instances (objects).
For instance, attribute ,,Number* to count the number of
created objects for a class.

= (Class attributes are underlined in the class diagram.

= (Class methods
= (Class methods are executed within the class not on the object.

= E.g. ,,count number of created objects of the class“
= The class method is underlined in the class diagram.

mobile N\
busm_e_ss:

Abstract Classes

= Definition / aggregation of common properties
= An abstract class does not allows objects to be instantiated.

= Template to create subclasses

= Abstract methods get “overwritten” by default
= The name of abstract classes is written in italic.

Vessel

Car

Ship

Airplane

mobile Associations
busin_e_ss_

Multiplicity
Class1 Class2
- Attribute - Attribute
+ method1() p 1+ | + method1()
+ method2() + method2()

= Describes the relationship between two classes
= |t is represented by a line connecting the two classes.

= The multiplicity min..max attached to the association defines the minimal or
maximal number of associations between the objects of the two classes.

(*) denotes any number of objects.

mobile Associations
busin_e_ss:

" Agg regati O n Ensemble Fraction
= Denotes a SO—

,has a“ relationship .

Car Engine
Vehicle
Chassis

1

- C oy o Ensemble Existing Dependent
OmPOS]tlon ‘ ‘ Fraction
= Composition is a stronger D o

variant of the aggregation
Contract . Order Item

= Denotes an “owns a” * .
relationship oo

mobile N\
busm_e_ss:

= Denotes an relation between
parent class and subclass

= |s represented by a line with an
empty arrow at the end,
pointing towards the parent
class

= (Class2 inherits from Class1.

= Purpose:

= Reuse code, by objects which can
be based on previously created
objects

Class1

Class2

Inheritance

User

Employee

mobile N\
busm_e_ss:

Class
= Attributes
= Methods

Object
= Attribute values
= Messages

Instantiation

Representation of the relation “class-object®
An object is an instance of a class.

Class1

Object1: Class1

Object2: Class1

38

mobile N\
busm_e_ss:

Class Diagram

Class3

Class1 Class4
/\
Class2 |1 Classh
| 4
1
N

Object1: Class2

39

mobile N\

busin_e_ss:

FileManager

-userFile : string

-dataFile : string
-user : string

+FileManager()
+readData() : void
+writeData() : void

GUI

«interface»

Medium

Q

-date : string
+book : int

+Magazine : int

+CD :int

Class Diagram (Example)

User

-userNumber : int

+Medium()

+User()

+return() : void

+lend() : void

+searchDate() : Medium
+searchAuthor() : Medium
+search() : Medium

BookManagement

+BuchManagement()
+lend() : void
+search() : void
+return() : void

+getAllBooks() : void

Chair

+lend() : void
+chair()

Assistent / Coworker

-firstName : string

+coworker()
+lend() : void

40

mﬁ?si%ﬁ?ss Activity Diagram

Activity diagrams are used to model workflows in a system.

Central element “Activity”: An activity is any kind of action.

Activities are structured by responsibilities.

Different views:

= Conceptional View
= e.g. business processes

= |Implementation View
= e.g. methods of objects

mobile N\
busm_e_ss:

Notation elements
= [Initial state/final state

= Activity

= Decision

= Split/join

= Responsibility

= Activity flow

Activity Diagram
Notation Elements

* o

ActionState1

| v

R
B B

mobile N\
busm_e_ss:

Activity Diagram

[Initiation]

Partition1

[Conclusion]

@<

[Condition 1] ‘

Activity 2

[Condition 2]

Partition2

Activity 1

Activity 6

Partition3

13

mobile N\
busm_e_ss:

!

Activity Diagram (Example)

Fill Out Enrollment
Forms

[correct]

Enrolling in the \

Enrollin Unwersnwjx

[otherwise]
University for the first
Nlincorect] A [help available] _f e
[trivi;/ 7| Obtain Help to Fill AD #: 007
QOut Forms
problems] \
jAﬁend Universiw
= Overview
Presentation

Enroll In Seminar(s

Make Initial Tuition
Payment

44

mobile N\
busm_e_ss_

Agenda

= Object-Oriented Approach

= Unified Model

= Model-Driven

ing Language (UML)

Development and Architectures

mobile S\ Model-driven Development (MDD)
business

= MDD is a concept for the development Abstract Model
of software

= The software system is described by an
abstract model (e.g. based on UML)

= The abstract model is typically)
independent from the target Code Generation
programming language, OS platform or

other any underlying technology @
= The abstract model allows an

automatic transformation into code for Java, .Net, Objective-C
multiple target OS platforms

= The resulting code may vary from / \
skeleton classes to complete software Windows MacOS
products

Linux

M=) What is an Abstract Model?

= Abstraction of the real software system (not the real
world)

= Comprised of only the relevant aspects of a system -
irrelevant ones are ignored

= Different abstraction levels are possible

User Data

System

Request

mobile N\
busm_e_ss_

Round-Trip Engineering

= Modifications to the model can automatically
be transformed into code and vice versa.

Forward Engineering

7N

Model Code

S

Reverse Engineering

mobile N\ Automation in the
oEEE Development Process

= MDD promotes automation within the development process.

= Automated analysis and verification of model
= Since models do not contain implementation details they are easier to analyse.

= Automated code generation from model, which guarantees the
conformance to the model

= Runtime monitoring based on a model

= Runtime monitoring makes sure that the implementation follows the behaviour
specified in the model.

= Automated test generation
= Models can be used to generate test cases for the implementation.

O s Benefits of MDD

= Reduced development time

= The model is timeless: It will age with the domain and not with the
technology.

= |Improved documentation of the software system
= A model is a better documentation than code
= |mproved readability - especially by non IT-personnel
= Because of automated generation always consistent with the code

= The system can be adjusted more easily.

= Platform and programming language independence

Source: Scheier, 2006

moble ™ Model-Driven Architecture (MDA)

= MDA was introduced by the Object Management Group (OMG).

= MDA separates the business and application logic from the
underlying implementation platform.

= MDA is a forward engineering approach where first abstract model
diagrams are developed which are later transformed to code.

= The goal of MDA is to separate the conceptual design from the
implementation architecture. i

Manufacturing E-Commerce

Source: OMG, 2011

51

mobile N\
busm_e_ss_

Model-Driven Architecture
Development Process

Developers develop platform independent
models (PIM) for the software (e.g. readable
design models or UML).

The platform independent models document
the business functionality of a software —
independent from the technology-specific
code.

After the target implementation platform
was chosen, the platform independent
models can automatically be translated to
platform specific models (PSM).

The platform specific models are used to
guide the implementation for the chosen
platform.

Platform Independent Model
(PIM)

Ve

Platform Specific Model
(PSM)

4

Code

mobile MDA Benefits for the
busingss Software Lifecycle

= |Implementation: MDA enables the integration of new target
software platforms based on the existing design models.

= [ntegration: Integration is easier since both the implementation
and the design models exists at the time of integration.

= Maintenance: The availability of the design in a machine-readable
form gives developers direct access to the specification of the
system, making maintenance much simpler.

= Testing and simulation: The design models can be validated against
existing requirements and executable models can be used to
simulate the behaviour of the system.

mt?t?si!ﬁe\\ss Literature

= Booch, G.; Rumbaugh, J.; Jacobson, |. (1999): Das UML-
Benutzerhandbuch. Addison-Wesley =
= Hitz et al. (2005): UML@Work: Objektorientierte

Modellierung mit UML 2, d.punkt Verlag

= Java User Group CH, 2006. Johannes Scheier: Model
Driven Development, Grundprinzipien um das Potential zu
nutzen. Event: STAINLESS STEEL MODELS
www.jug.ch/events/slides/061018 johannes_scheier.pdf

= OMG (2014):
http://www.omg.org/gettingstarted/specintro.htm#MDA

= Stellmann, A.; Greene, J. (2011): Applied Software
Project Management, O‘Reilly Media Inc

54

http://www.jug.ch/events/slides/061018_johannes_scheier.pdf
http://www.omg.org/gettingstarted/specintro.htm

