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Agenda

I. Caesar Cipher

II. Stream Ciphers (Vernam code)

III. Vigenère Cipher 

IV. Asymmetric Cryptosystems and RSA 
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Exercise 1 (Caesar Cipher)

A Caesar encryption is given by the following encryption function:

𝑒𝑘: ℤ26 → ℤ26, 𝑥 → 𝑥 + 𝑘 𝑚𝑜𝑑 26

,with 𝑘 ∈ ℤ26

a) Encrypt the message "perfect indistinguishability" using 𝑒10.

b) What is perfect indistinguishability?

c) Does the condition of perfect indistinguishability hold in general 
for the Caesar Cipher? Give a two-line explanation. 

d) What attacks can be used to break the Caesar Cipher?
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Background − Modulo

▪ Let 𝑎, 𝑏 ∈ ℤ ∖ {0}. With remainder(𝑎, 𝑏)
we denote the remainder, which results 

from dividing 𝑎 by 𝑏

▪ 𝑅𝑒𝑠𝑡 𝑎, 𝑏 ≔ min{𝑟 ∈ ℕ ∶ ∃ 𝑚 ∈ ℤ 𝑤𝑖𝑡ℎ 𝑎 =
𝑚 ∙ 𝑏 + 𝑟}

▪ 𝑅𝑒𝑠𝑡 𝑎, 𝑏 = a −m ∙ 𝑏

▪ 𝑎 ≡ 𝑏 𝑚𝑜𝑑𝑚 ∶⇔ 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑎,𝑚 =
𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑏,𝑚 ,𝑤𝑖𝑡ℎ 𝑚 ∈ ℕ ∖ {1}

4
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Exercise 1 (Caesar Cipher)

A Caesar encryption is given by the following encryption function:

𝑒𝑘: ℤ26 → ℤ26, 𝑥 → 𝑥 + 𝑘 𝑚𝑜𝑑 26

,with 𝑘 ∈ ℤ26

a) Encrypt the message "perfect indistinguishability" using 𝑒10.

b) What is perfect indistinguishability?

c) Does the condition of perfect indistinguishability hold in general 
for the Caesar Cipher? Give a two-line explanation. 

d) What attacks can be used to break the Caesar Cipher?
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Exercise 1 (Caesar Cipher)

▪ For k є {0..25} we have:

▪ An encryption function: 

▪ e: x -> (x+k) mod 26

▪ A decryption function: 

▪ d: x -> (x-k) mod 26

▪ In this case ke = kd
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Exercise 1 (Caesar Cipher)

▪ We assign a number for every character.

▪ This enables us to calculate with letters as if they 

were numbers.

▪ Assign letter with index 10 index 0 

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

a) Encrypt the message "perfect indistinguishability"
using 𝑒10.
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Exercise 1 (Caesar Cipher)

▪ We assign a number for every 

character.

▪ This enables us to calculate with 

letters as if they were numbers.

▪ Assign letter with index 10 index 0 

k l m n o p q r s t u v w x y z a b c d e f g h i j

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

"perfect indistinguishability" → "zobpomd sxnscdsxqescrklsvsdi"

a) Encrypt the message "perfect indistinguishability"
using 𝑒10.
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Exercise 1 (Caesar Cipher)

b) What is perfect indistinguishability?
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Exercise 1 (Caesar Cipher)

b) What is perfect indistinguishability?

10

Solution: An encryption scheme is perfectly secret if for 

all plaintexts 𝑚0, 𝑚1 ∈ 𝑀 and all cyphertexts 𝑐 ∈ 𝐶:

Pr 𝑒𝑘 𝑚0 = 𝑐 = Pr 𝑒𝑘 𝑚1 = 𝑐

The condition that all plaintexts have the same 

probability for a given ciphertext is called perfect 

indistinguishability. [Kn19] 
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c) Does the condition of perfect indistinguishability hold 

in general for the Caesar Cipher? Give a two-line 

explanation. 
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c) Does the condition of perfect indistinguishability hold 

in general for the Caesar Cipher? Give a two-line 

explanation. 

Solution: No. In general, the Caesar Cypher does not fulfil 

the condition of perfect secrecy. We easily can decrypt 

the message by trying all 26 possible keys. (We can make 

the scheme perfectly secret if we use a different key for 

each letter.) 
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d) What attacks can be used to break the Caesar Cipher?
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d) What attacks can be used to break the Caesar Cipher?

Solution:

▪ Brute force attack 

▪ Statistical ciphertext-only attack
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Assessment of Caesar Cipher

▪ Very simple form of encryption.

▪ The encryption and decryption algorithms are very easy 

and fast to compute.

▪ It uses a very limited key space (n=26)

▪ Therefore, the encryption is very easy and fast to 

compromise.
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Encryption - Decryption

16

http://www.pgpi.org/doc/guide/6.5/en/intro/
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Exercise 2 Stream Ciphers 

(Vernam code)

17

a) What is a one-time pad (Vernam-code)? 

b) Zoe wants to encrypt the letter Z. The letter is 
given in ASCII code. The ASCII value for Z is 9010 = 
11110102. Using Vernam-code, which of the 
following keys are suitable to encrypt this 
plaintext?

I. b1) 11100100

II. b2) 0011101

III. b3) 101011

c) Encrypt the message using Vernam-code, XOR as 
an encryption function and the key in b).
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Exercise 2 Stream Ciphers 

(Vernam code)
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a) What is a one-time pad (Vernam-code)? 
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Exercise 2 Stream Ciphers 

(Vernam code)
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a) What is a one-time pad (Vernam-code)? 

Solution: 

▪ Invented by Gilbert Vernam

▪ The length of the key is as long as the length of the 

plaintext.

▪ The key is randomly chosen and only used once. 

▪ Every key has the same probability. 
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Exercise 2 Stream Ciphers 

(Vernam code)
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Exercise 2 Stream Ciphers 

(Vernam code)
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b) Zoe wants to encrypt the letter Z. The letter 

is given in ASCII code. The ASCII value for Z is 

9010 = 11110102. Using Vernam-code, which of 

the following keys are suitable to encrypt this 

plaintext?

I. b1) 11100100

II. b2) 0011101

III. b3) 101011
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Exercise 2 Stream Ciphers 

(Vernam code)
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b) Zoe wants to encrypt the letter Z. The letter 

is given in ASCII code. The ASCII value for Z is 

9010 = 11110102. Using Vernam-code, which of 

the following keys are suitable to encrypt this 

plaintext?

I. b1) 11100100

II. b2) 0011101

III. b3) 101011
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Exercise 2: Stream Ciphers 

(Vernam code)

23

c) Encrypt the message using Vernam-code, XOR 

as an encryption function and the key in b).

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

1 1 1 1 0 1 0

0 0 1 1 1 0 1

1 1 0 0 1 1 1
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Exercise 3 (Vigenère Cipher)

a) What is the Vigenère Cipher?

b) In the following you are given the key 𝑘 = "𝐺𝑂𝐸𝑇𝐻𝐸"
and the cyphertext 𝑐 =
"CSWMLRJWWMOISCWMIIGIXBMYRQEFWYY". Identify 

the message 𝑚 using the running key variant as given 

in the lecture. Show the necessary steps (use the 

Vigenére tableau below when necessary).

24
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Exercise 3 (Vigenère Cipher)

a) What is the Vigenère Cipher?
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Exercise 3 (Vigenère Cipher)

a) What is the Vigenère Cipher?

▪ The Vigenère cipher chooses a sequence of keys, 

represented by a string. 

▪ The key letters are applied to successive plaintext 

characters. 

▪ When the end of the key is reached, the key starts 

over. 

▪ The length of the key is called the period of the cipher. 

26
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Exercise 3 (Vigenère Cipher)

b) In the following you are given the key 𝑘 = "𝐺𝑂𝐸𝑇𝐻𝐸"
and the cyphertext 𝑐 =
"CSWMLRJWWMOISCWMIIGIXBMYRQEFWYY". Identify 

the message 𝑚 using the running key variant as given 

in the lecture. Show the necessary steps (use the 

Vigenére tableau below when necessary).

27

c C S W M L R J W W M O I S C W M I I G I X B M Y R Q E F W Y Y
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Exercise 3 (Vigenère Tableau)
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Exercise 3 (Vigenère Tableau)
k

m

c
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Exercise 3 (Vigenère Cipher)

b) In the following you are given the key 𝑘 = "𝐺𝑂𝐸𝑇𝐻𝐸"
and the cyphertext 𝑐 =
"CSWMLRJWWMOISCWMIIGIXBMYRQEFWYY". Identify 

the message 𝑚 using the running key variant as given 

in the lecture. Show the necessary steps (use the 

Vigenére tableau below when necessary).
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c C S W M L R J W W M O I S C W M I I G I X B M Y R Q E F W Y Y

k G O E T H E G O E T H E G O E T H E G O E T H E G O E T H E G
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Assessment Vigenére Cipher

▪ Then a Prussian cavalry officer named Kasiski noticed 
that repetitions occur when characters of the key appear 
over the same characters in the plaintext.

▪ The number of characters between successive 
repetitions is a multiple of the period (key length).

▪ Given this information and a short period the Vigenère
cipher is quite easily breakable.

▪ Example: The Caesar cipher is a Vigenère cipher with a 
period of 1.

[Bi2005]
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Guess which crypto system this is
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Symmetric or Asymmetric?
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Symmetric Encryption

Algorithm Performance*

RC6 78 ms

SERPENT 95 ms

IDEA 170 ms

MARS 80 ms

TWOFISH 100 ms

DES-ede 250 ms

RIJNDEAL (AES) 65 ms

* Encryption  of 1 MB on a Pentium 2.8 GHz, using the FlexiProvider Java)

Advantage: Algorithms are very fast

[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]
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Performance of 

Public Key Algorithms

Algorithm Performance
*

Performance compared to

Symmetric encryption (AES)

RSA (1024 

bits)

6.6 s Factor 100 slower 

RSA (2048 

bits)

11.8 s Factor 180 slower

* Encryption of 1 MB on a Pentium 2.8 GHz, using the FlexiProvider (Java)

Disadvantage: Complex operations 

with very big numbers

 Algorithms are very slow

[J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU-Darmstadt]
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This crypto system is…?
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Symmetric or Asymmetric?
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Exercise 4 (Asymmetric 

Cryptosystems and RSA)

a) Describe differences between symmetric and asymmetric cryptosystems.  

b) Alice wants to send a message m to Bob. Because the message is a secret, 

Alice encrypts the message using RSA. Complete the flow chart below and 
also show the necessary calculation steps for encryption and decryption. 

Indicate which information are public or known only by Bob or Alice.

c) Consider a RSA cryptosystem. The following keys were made public: 𝑒=5, 

𝑛=21.

i. Encrypt the message 𝑚=3 using RSA

ii. Determine p and q. 

iii. Determine the private key d.

iv. Decrypt the cyphertext and check that the result is 𝑚=3

v. What is the problem with the chosen keys?

d) Decrypt the message c = 7 using RSA. The private key of the receiver is 𝑑 =
4 and 𝑛 = 13.

e) Why is it possible to break RSA with Post-Quantum Cryptography?

36
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Exercise 4 (Asymmetric 

Cryptosystems and RSA)

a) Describe differences between symmetric and asymmetric 

cryptosystems.  

37
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

38

a) Describe differences between symmetric and 

asymmetric cryptosystems.  

Symmetric Asymmetric

Both encryption and decryption are 

done with the same key. 

Encryption with public key, 

decryption with private key. 

One key per communication pair is 

necessary. 

Does not require a secure 

communication channel. Public key 

can be freely distributed. 

Efficient in terms of performance Less efficient

Keys have to be kept secret Only keep own private key secret 

Secure agreement and transfer are 

necessary.

Does not require agreement on a 

shared key. 

A centre for key distribution is 

possible but this party then knows all 

secret keys! 

A centre for key distribution is 

possible and this party does not 

know the secret keys.
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

39

b) Alice wants to send a message m to Bob. Because the 

message is a secret, Alice encrypts the message using 

RSA. Complete the flow chart below and also show the 

necessary calculation steps for encryption and 

decryption. Indicate which information are public or 

known only by Bob or Alice.
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

40

Alice Bob

• Alice has a 

message m
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

41

Alice Bob

• Bob chooses 𝑝,𝑞
• Bob calculates 𝑛 = 𝑝 ∗ 𝑞
• Bob chooses public key 𝑒 that 1 <

𝑒 < 𝑝 − 1 𝑞− 1 and 

gcd 𝑒, 𝑝− 1 𝑞 − 1 = 1

• Computes a modular inverse d that:  

1 < 𝑑 < 𝑝− 1 𝑞− 1 and 

𝑒𝑑 ≡ 1 mod 𝑝 − 1 (𝑞 − 1)

• Alice has a 

message m
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

42

Alice Bob

• Bob chooses 𝑝,𝑞
• Bob calculates 𝑛 = 𝑝 ∗ 𝑞
• Bob chooses public key 𝑒 that 1 <

𝑒 < 𝑝 − 1 𝑞− 1 and 

gcd 𝑒, 𝑝− 1 𝑞 − 1 = 1

• Computes a modular inverse d that:  

1 < 𝑑 < 𝑝− 1 𝑞− 1 and 

𝑒𝑑 ≡ 1 mod 𝑝 − 1 (𝑞 − 1)
• Alice calculates

𝑐 = 𝑚𝑒 mod 𝑛

• Alice has a 

message m
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

43

Alice Bob

• Bob chooses 𝑝,𝑞
• Bob calculates 𝑛 = 𝑝 ∗ 𝑞
• Bob chooses public key 𝑒 that 1 <

𝑒 < 𝑝 − 1 𝑞− 1 and 

gcd 𝑒, 𝑝− 1 𝑞 − 1 = 1

• Computes a modular inverse d that:  

1 < 𝑑 < 𝑝− 1 𝑞− 1 and 

𝑒𝑑 ≡ 1 mod 𝑝 − 1 (𝑞 − 1)
• Alice calculates

𝑐 = 𝑚𝑒 mod 𝑛

• Bob computes𝑚 = 𝑐𝑑 mod 𝑛
and can now read the message

• Alice has a 

message m
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c) Consider a RSA cryptosystem. The 

following keys were made public: 𝑒 = 5, 

𝑛 = 21.

i. Encrypt the message 𝑚 = 3 using RSA

ii. Determine p and q. 

iii. Determine the private key d.

iv. Decrypt the cyphertext and check that the 

result is 𝑚 = 3

v. What is the problem with the chosen keys?
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.i Encrypt the message 𝑚 = 3 using RSA. The following 

keys were made public: 𝑒 = 5, 𝑛 = 21.

Solution:  𝑐 = 𝑚𝑒 mod 𝑛

𝑐 = 35 mod 21

𝑐 = 243 mod 21

𝑐 = 12

47
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.ii Determine p and q (Factorize n). 

48
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Exercise 4 (Fermat‘s

Factorization) 

▪ Let 𝑝, 𝑞 be prime and 𝑛 = 𝑝𝑞. Fermat’s factoring 
represents N as a difference of 2 squares: 

▪ 𝒏 = 𝒙𝟐 −𝒚𝟐 = 𝒙+𝒚 𝒙− 𝒚 ).

▪ First, we start with x = 𝑛 and then increase x by 

1 until 𝑥2 − 𝑛 is square (so that we can derive y) so 

that 𝒏 = 𝑥2 −𝑦2 holds.

▪ This method works because we can represent n as a 
difference of 2 squares: 

▪ 𝑝𝑞 = (
1

2
(𝑝 + 𝑞)2 − (

1

2
(𝑝 − 𝑞)2)2 = 𝑥2 −𝑦2.

▪ You will find this explanation with more details in 
Knospe 2019, p. 178 f. 49
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.ii Determine p and q (Factorize 𝑛).

▪ Let 𝑛 = 21; then we first set 𝑥 ≈ 𝑛. We 

obtain  𝑥 = ? ? ? and derive 𝑥2 − 𝑛 = ? ? ?. 
Because 4 is square we know that 𝑦 =
? ? ?. From above we know that 𝑝𝑞 =
𝑥 + 𝑦 𝑥 − 𝑦 so we receive ? ? ? = ? ? ?∙
? ? ?.
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.ii Determine p and q (Factorize 𝑛).

▪ Let 𝑛 = 21; then we first set 𝑥 ≈ 𝑛. We 

obtain  𝑥 = 5 and derive 𝑥2 − 𝑛 = 4. 

Because 4 is square we know that 𝑦 =
? ? ?. From above we know that 𝑝𝑞 =
𝑥 + 𝑦 𝑥 − 𝑦 so we receive 21 = ? ? ?∙
? ? ?.
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.ii Determine p and q (Factorize 𝑛).

▪ Let 𝑛 = 21; then we first set 𝑥 ≈ 𝑛. We 

obtain  𝑥 = 5 and derive 𝑥2 − 𝑛 = 4. 

Because 4 is square we know that 𝑦 = 2. 

From above we know that 𝑝𝑞 = (
)

𝑥 +
𝑦 𝑥 − 𝑦 so we receive 21 = ? ? ?∙? ? ?.

52
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.ii Determine p and q (Factorize 𝑛).

▪ Let 𝑛 = 21; then we first set 𝑥 ≈ 𝑛. We 

obtain  𝑥 = 5 and derive 𝑥2 − 𝑛 = 4. 

Because 4 is square we know that 𝑦 = 2. 

From above we know that 𝑝𝑞 = (
)

𝑥 +
𝑦 𝑥 − 𝑦 so we receive 21 = 7 ∙ 3.

53
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.iii Determine d. 
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.iii Determine d. 

Solution:

𝜙 𝑛 = (𝑝 − 1)(𝑞 − 1)

𝜙 𝑛 = 12

𝑑 · 𝑒 ≡ 1 𝑚𝑜𝑑 𝜙 𝑛 and 1 < 𝑑 < 𝜙 𝑛
𝑑 · 5 ≡ 1𝑚𝑜𝑑 12
𝑑 · 5 ≡ 1𝑚𝑜𝑑 12
𝑑 = 5

1 < 5 < 12
55

12 → +1 → 13

24 → +1 → 25
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.iv Decrypt the cyphertext and check that 

the result is 𝑚 = 3 

56
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.iv Decrypt the cyphertext and check that 

the result is 𝑚 = 3 

Solution:𝑚 = 𝑐𝑑 mod 𝑛

𝑚 = 125 mod 21  

𝑚 = 248832 mod 21

𝑚 = 3
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Simple Way

2 4 8 8 3 2 : 2 1 = 1 1 8 9

2 1

3 8

2 1

1 7 8

1 6 8

1 0 3

8 4

1 9 2

1 8 9

3
58

Only for small exponents
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Excursus - Modular 

exponentiation

𝑚 = 125 mod 21

12 ≡ 12 mod 21
122 ≡ 144 mod 21 ≡ 18

124 ≡ 122 ∙ 122 ≡ 18 ∙ 18 ≡ 182 mod 21 ≡ 9
125 ≡ 124 ∙ 12 ≡ 9 ∙ 12 mod 21
𝑚 = 108 mod 21
𝑚= 3

59

1 2 3 4 5 6

21 42 63 84 105 126
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

c.v What is the problem with the chosen 

keys?

Solution:

▪ Too short, a modulus with up to around 

1000 bits can be factored (in 2019).

60
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

d) Decrypt the message c = 2 using RSA. The private key 

of the receiver is 𝑑 = 3 and 𝑛 = 15.

61
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

d) Decrypt the message c = 2 using RSA. The private key 

of the receiver is 𝑑 = 3 and 𝑛 = 15.

Solution:  𝑚 = 𝑐𝑑 mod 𝑛

8 = 23 mod 15

62
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

e) Let 𝑛 = 221. Use Fermat’s factorization to factorize 𝑛. 

(Hint: 𝑛 = 𝑥2 − 𝑦2 = 𝑥 + 𝑦 𝑥 − 𝑦 )

63
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

e) Let 𝑛 = 221. Use Fermat’s factorization to factorize 𝑛. 

(Hint: 𝑛 = 𝑥2 − 𝑦2 = 𝑥 + 𝑦 𝑥 − 𝑦 )

64

Solution: 𝑛 = 𝑥2 − 𝑦2

221 ≈ 14.87

Start with 𝑥 = 15
𝑥2 − 𝑛 = 𝑦2, put in the numbers

225− 221 = 4, this is a square. We receive 

𝑦 = 2 (If we do not receive a square we try 𝑥 = 16 ...)

𝑛 = 𝑥 + 𝑦 𝑥 − 𝑦 = 15 + 2 15− 2 = 17 ∙ 13

(Only efficient if prime factors are close)
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

f) Why can Post-Quantum Cryptography break RSA?

65
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Exercise 4 (Asymmetric

Cryptosystems and RSA) 

f) Why can Post-Quantum Cryptography break RSA?

Solution: RSA is based on the difficulty to solve a 

factoring problem. “Shor’s factoring algorithm leverages 

the Quantum Fourier Transform to solve factoring 

problems in polynomial time.” [Kn19] 
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Assessment of RSA

▪ “RSA [currently] considered as secure 

against non quantum computers”

▪ Prime factors randomly chosen

▪ Prime factors more than 1000 bits longs

67
[Kn19, p. 182]
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Thank you!

Questions: security@m-chair.de

68
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